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“Push—pull” organic chromophores contain electron donor and
acceptor groups connected throughr&onjugated linker. They @/WM/\(C“
often have large first hyperpolarizabilitig$) @nd hold great promise BN o
as the optically active components of polymer-based materials for
electrooptic modulators and other second-order nonlinear optical
devices' The hyperpolarizabilities of these molecules are typically
described by a two-level model in which only the ground and first 4°°Wavg?e°ngth§%°m
excited electronic states contrib@t&his two-level model is widely
used to extrapolate the frequency dependengefadm measure-
ments made at a single frequency, by either electric field-induced
second harmonic generation or its incoherent analogue, hyper-
Rayleigh scattering.It has theoretical and experimental support
but has rarely been tested rigorously, particularly in complex
chromophores optimized for large hyperpolarizabilities. One pro-
posed test of the two-level model involves comparing the experi-
mentalp dispersion with that calculated from a Krameisronig
transform of the linear absorption spectréidccurate measurement
of the hyper-Rayleigh intensity across a two-photon resonance is
difficult, however, and has been attempted in only a few sysfems.

Large organic molecules in solution phase tend to have broad,
structureless linear absorption spectra and hyperpolarizability RHR
dispersions. Resonance Raman (RR) spectroscopy can provide
detailed information about the vibronic structure that underlies
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featureless linear absorption speérResonance hyper-Raman - i A AEA  AEAA
(RHR) scattering should carry similar information about states that 500 750 1000_ 1250_1 1500
are both one-photon and two-photon allowed (Scheme 1). As the Raman shift / cm

vibrational intensities carry information about the structure of the Fjgure 1. Resonance Raman (532 nm excitation) and hyper-Raman (1064
resonant electronic state, comparison of RR and RHR intensities nm excitation) spectra dfb-5 (upper panel, 0.45 mM in cyclohexane) and
should allow us to determine whether the same resonant electronic2b-5 (lower panel, 0.4 mM in acetone). The insets are the linear absorption
state dominates both processes. Two-photon fluorescence is rng?:CJfrfiJC: r?:;ﬁgsflgsr Q;ﬁfysowent bands in the RR spectra. RR spectra
ognized as a complication in the measurement of hyper-Rayleigh '

intensities! but its incoherent analogue, resonance hyper-Raman Scheme 1. Resonance Raman (RR, Left) and Resonance

scattering, apparently has not been reported from molecules of thisHyPer-Raman Scattering (RHR, Right).

type.

We have observed hyper-Raman scattering from severakpush v {
pull chromophores using excitation that is two-photon resonant with
their strong linear absorptiodsFigure 1 compares the resonance
hyper-Raman and resonance Raman spectra for strudioi®and
2b-50f ref 9. The RR and RHR spectra are essentially identical in
1b-5 and extremely similar irRb-5. 2b-4, the analogue ofb-5
having only four polyenic double bonds, also gives RHR and RR 0
spectra in cyclohexane that are very similar to one another, althoughmolecules examined produced either no detectable spectra or strong
both spectra are superimposed on fluorescence backgrounds thagwo-photon fluorescence under our experimental conditions.
reduce the signal-to-noise ratio. All of the spectra are dominated Resonance hyper-Raman scattering has rarely been reported from
by double-bond and single-bond stretching vibrations of the molecules in solution, perhaps because of competition from other
conjugated chain. Disperse Red 1, one of the benchmark chro-nonlinear processes at the high laser intensities reqtfiretk
mophores for polymer-based nonlinear optical matetfaxhibits spectra of the pure solvents are undetectable (cyclohexane) or
weak RHR scattering in both methanol and L. Several other  extremely weak (acetone) under our experimental conditions,

T Current address: School of Natural Sciences, University of California, Merced. although normal Raman spectra Of_the solvents are easily obtained
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mophores in Figure 1. A recent RHR study of all-trans retinal in and two-photon absorptivity include measuring the two-photon
solution used tightly focused picosecond laser pulses having absorption spectrum or the frequency dispersiof(ef2w;w,w),
considerably higher peak intensities than those employed in our both of which require comparing intensities for weak processes
work.*?2 The strong RHR from retinal was attributed to its high measured with pulsed lasers at different wavelengths. Comparison
second harmonic hyperpolarizabilif§{—2w;w,w) = 730 x 10~ of RR and RHR spectra at one or a few/2w, pairs may provide
esu at 1064 nm. The corresponding valuesfor5 and 2b-5 at an experimentally simpler way to determine whether a single
1907 nm are considerably higher, 21801030 esu and 1945¢ electronic state dominates both transitions. More importantly, the
10730 esu, respectivel.These are all preresonant values, while RR and RHR spectra provide information about the structure and
the HR measurements were made within the two-photon resonancedynamics of the resonant state(s) not available from the low-
but they are consistent with the expectation that resonant hyper-resolution electronic spectra.
Rayleigh and hyper-Raman intensities should be highly correlated,
as both require a resonant electronic state that is both one- andth
two-photon allowed.

In the vibronic theory of Raman scatteriffgthe leading (A-
term) contribution to the -©f vibrational transition intensity for a
single, strongly allowed resonant electronic state is given by
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The vibrational intensity patterns in both spectra depend only on
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. . . . yper-rRaman spectra were obtainea wi nm excitation rrom a :

at.a)L_ar?nd RR_ excited atd_. Thus, we expect 'de'_mcal spectra in YAG laser producing~8 ns pulses at a 30 Hz repetition rate. A 50 cm

this limit. If, instead, there are two or more excited stagdhat focal length lens focused-2B mJ/pulse inte~3 mL of solution contained

contribute differently to the one-photon and two-photon transitions, in a rapidly stirred fused silica cuvette. Scattering was collectechii4s®

the RR and RHR spectra should have different intensity patterns
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; . X and a 532 nm notch filter was placed before the spectrograph entrance
in conjugated bond lengths, different states should have somewnhat slit to reduce stray light. Both HR and RR spectra were accumulated for
different geometries. The close agreement between the RR and RHR ~ 5~15 min. No power dependence of the spectral features was observed
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